3.515 \(\int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=114 \[ \frac {a^2 \sin ^5(c+d x)}{5 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}-\frac {a^2 \sin ^3(c+d x)}{3 d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d} \]

[Out]

-a^2*csc(d*x+c)/d+2*a^2*ln(sin(d*x+c))/d-a^2*sin(d*x+c)/d-2*a^2*sin(d*x+c)^2/d-1/3*a^2*sin(d*x+c)^3/d+1/2*a^2*
sin(d*x+c)^4/d+1/5*a^2*sin(d*x+c)^5/d

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2836, 12, 88} \[ \frac {a^2 \sin ^5(c+d x)}{5 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}-\frac {a^2 \sin ^3(c+d x)}{3 d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*Cot[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

-((a^2*Csc[c + d*x])/d) + (2*a^2*Log[Sin[c + d*x]])/d - (a^2*Sin[c + d*x])/d - (2*a^2*Sin[c + d*x]^2)/d - (a^2
*Sin[c + d*x]^3)/(3*d) + (a^2*Sin[c + d*x]^4)/(2*d) + (a^2*Sin[c + d*x]^5)/(5*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2836

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d*x)/b
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps

\begin {align*} \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx &=\frac {\operatorname {Subst}\left (\int \frac {a^2 (a-x)^2 (a+x)^4}{x^2} \, dx,x,a \sin (c+d x)\right )}{a^5 d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {(a-x)^2 (a+x)^4}{x^2} \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=\frac {\operatorname {Subst}\left (\int \left (-a^4+\frac {a^6}{x^2}+\frac {2 a^5}{x}-4 a^3 x-a^2 x^2+2 a x^3+x^4\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}+\frac {a^2 \sin ^5(c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 114, normalized size = 1.00 \[ \frac {a^2 \sin ^5(c+d x)}{5 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}-\frac {a^2 \sin ^3(c+d x)}{3 d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*Cot[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

-((a^2*Csc[c + d*x])/d) + (2*a^2*Log[Sin[c + d*x]])/d - (a^2*Sin[c + d*x])/d - (2*a^2*Sin[c + d*x]^2)/d - (a^2
*Sin[c + d*x]^3)/(3*d) + (a^2*Sin[c + d*x]^4)/(2*d) + (a^2*Sin[c + d*x]^5)/(5*d)

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 118, normalized size = 1.04 \[ -\frac {48 \, a^{2} \cos \left (d x + c\right )^{6} - 64 \, a^{2} \cos \left (d x + c\right )^{4} - 256 \, a^{2} \cos \left (d x + c\right )^{2} - 480 \, a^{2} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) + 512 \, a^{2} - 15 \, {\left (8 \, a^{2} \cos \left (d x + c\right )^{4} + 16 \, a^{2} \cos \left (d x + c\right )^{2} - 11 \, a^{2}\right )} \sin \left (d x + c\right )}{240 \, d \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/240*(48*a^2*cos(d*x + c)^6 - 64*a^2*cos(d*x + c)^4 - 256*a^2*cos(d*x + c)^2 - 480*a^2*log(1/2*sin(d*x + c))
*sin(d*x + c) + 512*a^2 - 15*(8*a^2*cos(d*x + c)^4 + 16*a^2*cos(d*x + c)^2 - 11*a^2)*sin(d*x + c))/(d*sin(d*x
+ c))

________________________________________________________________________________________

giac [A]  time = 0.23, size = 107, normalized size = 0.94 \[ \frac {6 \, a^{2} \sin \left (d x + c\right )^{5} + 15 \, a^{2} \sin \left (d x + c\right )^{4} - 10 \, a^{2} \sin \left (d x + c\right )^{3} - 60 \, a^{2} \sin \left (d x + c\right )^{2} + 60 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) - 30 \, a^{2} \sin \left (d x + c\right ) - \frac {30 \, {\left (2 \, a^{2} \sin \left (d x + c\right ) + a^{2}\right )}}{\sin \left (d x + c\right )}}{30 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/30*(6*a^2*sin(d*x + c)^5 + 15*a^2*sin(d*x + c)^4 - 10*a^2*sin(d*x + c)^3 - 60*a^2*sin(d*x + c)^2 + 60*a^2*lo
g(abs(sin(d*x + c))) - 30*a^2*sin(d*x + c) - 30*(2*a^2*sin(d*x + c) + a^2)/sin(d*x + c))/d

________________________________________________________________________________________

maple [A]  time = 0.41, size = 130, normalized size = 1.14 \[ -\frac {32 a^{2} \sin \left (d x +c \right )}{15 d}-\frac {4 \sin \left (d x +c \right ) a^{2} \left (\cos ^{4}\left (d x +c \right )\right )}{5 d}-\frac {16 \sin \left (d x +c \right ) a^{2} \left (\cos ^{2}\left (d x +c \right )\right )}{15 d}+\frac {\left (\cos ^{4}\left (d x +c \right )\right ) a^{2}}{2 d}+\frac {a^{2} \left (\cos ^{2}\left (d x +c \right )\right )}{d}+\frac {2 a^{2} \ln \left (\sin \left (d x +c \right )\right )}{d}-\frac {a^{2} \left (\cos ^{6}\left (d x +c \right )\right )}{d \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x)

[Out]

-32/15*a^2*sin(d*x+c)/d-4/5/d*sin(d*x+c)*a^2*cos(d*x+c)^4-16/15/d*sin(d*x+c)*a^2*cos(d*x+c)^2+1/2/d*cos(d*x+c)
^4*a^2+1/d*a^2*cos(d*x+c)^2+2*a^2*ln(sin(d*x+c))/d-1/d*a^2/sin(d*x+c)*cos(d*x+c)^6

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 94, normalized size = 0.82 \[ \frac {6 \, a^{2} \sin \left (d x + c\right )^{5} + 15 \, a^{2} \sin \left (d x + c\right )^{4} - 10 \, a^{2} \sin \left (d x + c\right )^{3} - 60 \, a^{2} \sin \left (d x + c\right )^{2} + 60 \, a^{2} \log \left (\sin \left (d x + c\right )\right ) - 30 \, a^{2} \sin \left (d x + c\right ) - \frac {30 \, a^{2}}{\sin \left (d x + c\right )}}{30 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/30*(6*a^2*sin(d*x + c)^5 + 15*a^2*sin(d*x + c)^4 - 10*a^2*sin(d*x + c)^3 - 60*a^2*sin(d*x + c)^2 + 60*a^2*lo
g(sin(d*x + c)) - 30*a^2*sin(d*x + c) - 30*a^2/sin(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 8.95, size = 333, normalized size = 2.92 \[ \frac {16\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{d}-\frac {8\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{d}-\frac {16\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{d}+\frac {8\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{d}-\frac {2\,a^2\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )}{d}+\frac {2\,a^2\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {2\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {176\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{15\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {328\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{15\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {96\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{5\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {32\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{5\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {5\,a^2\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {a^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^5*(a + a*sin(c + d*x))^2)/sin(c + d*x)^2,x)

[Out]

(16*a^2*cos(c/2 + (d*x)/2)^4)/d - (8*a^2*cos(c/2 + (d*x)/2)^2)/d - (16*a^2*cos(c/2 + (d*x)/2)^6)/d + (8*a^2*co
s(c/2 + (d*x)/2)^8)/d - (2*a^2*log(1/cos(c/2 + (d*x)/2)^2))/d + (2*a^2*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/
2)))/d - (2*a^2*cos(c/2 + (d*x)/2)^3)/(3*d*sin(c/2 + (d*x)/2)) + (176*a^2*cos(c/2 + (d*x)/2)^5)/(15*d*sin(c/2
+ (d*x)/2)) - (328*a^2*cos(c/2 + (d*x)/2)^7)/(15*d*sin(c/2 + (d*x)/2)) + (96*a^2*cos(c/2 + (d*x)/2)^9)/(5*d*si
n(c/2 + (d*x)/2)) - (32*a^2*cos(c/2 + (d*x)/2)^11)/(5*d*sin(c/2 + (d*x)/2)) - (5*a^2*cos(c/2 + (d*x)/2))/(2*d*
sin(c/2 + (d*x)/2)) - (a^2*sin(c/2 + (d*x)/2))/(2*d*cos(c/2 + (d*x)/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**2*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________